スキャンレスデュアルコム顕微鏡による共焦点位相 イメージング

長谷 栄治^{*,**}・南川 丈夫^{*,**}・水野 孝彦^{*,**}・ 山本 裕紹^{**,***}・安井 武史^{*,**}

Confocal Phase Imaging by Use of Scan-Less Dual-Comb Microscopy

Eiji HASE^{*, **}, Takeo MINAMIKAWA^{*, **}, Takahiko MIZUNO^{*, **}, Hirotsugu YAMAMOTO^{**, ***} and Takeshi YASUI^{*, **}

We present confocal phase imaging with scan-less dual-comb microscopy, in which the confocal 2D image of a sample was encoded on the spectrum of optical frequency comb (OFC) by the 2D spectral disperser, and then the image-encoded OFC spectrum is acquired by dual-comb spectrometer to decode the 2D image. This approach enables to establish both confocal amplitude and phase imaging under the scan-less condition. We demonstrated a proof-of-principle experiment of the proposed method by confocal phase imaging of a variety of samples.

Key words: confocal microscopy, optical frequency comb, dual-comb spectroscopy

はじめに

共焦点レーザー顕微鏡 (confocal laser microscope; CLM)¹⁻³⁾は、共焦点効果による高い深さ分解能と迷光除 去能力をもち、低侵襲・非接触での三次元イメージングを 可能にすることから、非接触表面形状測定を始めとした工 業分野や、細胞・組織イメージングといったバイオ分野を 中心に幅広く応用されている. 例えば, 工業応用では測定 対象の吸収 / 散乱 / 反射分布といった情報を取得し、バイ オ応用では細胞などを蛍光標識することで得られる蛍光強 度を画像化している。このように、通常の CLM では光強 度計測に基づいてイメージコントラストを付与しているた め,透明または無蛍光の測定対象を可視化することは困難 である.また,共焦点効果による深さ方向の分解能は波長 オーダー (サブμm) 程度に制限されるため, nm オーダー の奥行き段差構造を分解することはできないという問題が ある.透明または無蛍光の測定対象に対しては、光強度を 利用する代わりに光の位相を用いれば、イメージコントラ ストを付与できる。例えば、位相差顕微鏡^{4,5)}や定量位相 顕微鏡^{6.7)}では、光の干渉を用いて対象を伝搬中に受けた 位相変化を計測することによって、屈折率 / 光学的厚さ / 幾何学的構造に基づいて画像化する.しかし、位相の折り 返しにより、深さ方向のダイナミックレンジが波長オー ダーに制限される.もし CLM に位相コントラストを導入 できれば、共焦点性を付与しながら、無染色での細胞の可 視化や、数十 nm オーダーの表面構造をもつ反射物体の計 測に適用可能となり、応用研究が加速すると考えられる.

CLM の共焦点光学系は、光源ピンホール、サンプル焦 点および検出ピンホールを共役とするため、点計測に基づ いている.そのため、イメージ取得には焦点スポットを二 次元的に機械的走査する必要がある.しかし、これらの機 械的な走査機構は高速計測の障害になるだけでなく、振動 などの環境外乱に対する脆弱性に繋がる.このような現状 から、機械的走査機構を不要とすることで、高速かつ外乱 にロバストな CLM が望まれている.そこで、CLM におけ る機械的走査を省略する有力な手法として、空間 / 波長変 換(スペクトルエンコーディング)がある⁸⁻¹⁰⁾.これは、

^{*}徳島大学ポスト LED フォトニクス研究所(〒770-8506 徳島県徳島市南常三島町 2-1) E-mail: hase@tokushima-u.ac.jp

^{***} JST, ERATO 美濃島知的光シンセサイザプロジェクト

^{***}宇都宮大学オプティクス教育センター (〒321-0904 栃木県宇都宮市陽東 7-1-2)

図1 スキャンレスデュアルコム顕微鏡の概念図.

空間情報を広帯域スペクトルに重畳し、スペクトル波形から空間情報を抽出する技術である。われわれは、空間/波長変換を行う広帯域スペクトル光として、光コムに着目した。光コムは、多数の安定な光周波数モード列が繰り返し周波数(*f*_{rep})間隔で規則的に櫛(コム)の歯状に並んだ超離散マルチスペクトル構造を有する。さらに、*f*_{rep}とキャリヤーエンベロープオフセット周波数*f*_{ceo}をレーザー制御でマイクロ波周波数標準に位相同期すれば、光コムを構成する光周波数モード列(絶対周波数*v_n* = *f*_{ceo}+*nf*_{rep})を、周波数標準にトレーサブルな「光周波数の物差し」として、光周波数標準や光周波数計測の分野で利用可能である。これまでに、デュアルコム分光法¹¹⁾で取得されたモード分解光コムスペクトルにおける「周波数精緻性」や「きわめて広い周波数ダイナミックレンジ」を利用したガス分光¹²⁾や距離計測¹³⁾が報告された。

ここで、光コムを「光周波数の物差し」としてではな く,「圧倒的多数の離散チャンネルを有する光キャリヤー」 として利用すれば、新しい応用展開が拓ける. すなわち、 波長 / 空間変換によってイメージ画素情報を光コムにスペ クトル重畳させた後にモード分解光コムスペクトルから読 み出せば、イメージ画素とコムモードを一対一対応させる ことが可能になり、スキャンレスなイメージ取得が可能に なる、この際、イメージ情報がスペクトル重畳された光コ ムを共焦点ピンホールに通すことにより共焦点性も付与で き、フルフィールドイメージングと共焦点イメージングを 両立できる. さらに、フーリエ変換分光に基づくデュアル コム分光法では、振幅スペクトルに加えて位相スペクトル の取得も可能である。したがって、得られた振幅・位相の 両スペクトルから振幅・位相の両イメージを再構成するこ とが可能となり、CLM において位相に基づく新たなイ メージコントラストを導入できる。本稿では、われわれが 開発したスキャンレスデュアルコム顕微鏡による共焦点位 相イメージング^{14,15)}について紹介する。

1. 原 理

スキャンレスデュアルコム顕微鏡の概念図を図1に示 す。入力される光コムは光源側ピンホールを通過した後、 二次元空間分散素子によって、個々のコムモードが異なる 角度で空間分散され、光学フーリエ面上で二次元のレイン ボースペクトログラフが形成される。これを対物レンズで 集光することにより, サンプル上にコムモードの二次元焦 点群が照射される。その結果、イメージ画素がコムモード にスペクトル重畳される。サンプルから反射された個々の コムモードは同一光路を逆伝搬することにより、再び空間 的に重畳される。その後、検出器側ピンホールを通過させ ることにより共焦点性を付与し、デュアルコム分光法に よって振幅および位相スペクトルを取得する。図2に、本 手法によって取得可能な共焦点振幅および位相イメージの 概念図を示す. 波長 / 空間変換によって二次元の焦点群が 形成されるが、それぞれのスポットは共焦点性によって ∆zの共焦点ボリューム内のみの情報をもつ. このような 光をデュアルコム分光法によって計測すれば、モード分解 振幅および位相スペクトルが計測できる。それぞれのコム モードは波長 / 空間変換に基づいてイメージ画素と一対一 対応しているため、最終的にはスペクトルから共焦点振幅 および位相イメージが取得可能となる。

二次元の波長 / 空間変換素子として、直交配置した VIPA (virtually imaged phased array) と回折格子を用いる^{8-10,16)}. VIPA とは、光の入射面側に反射率 100%、出力面に反射 率 96%以上の反射コーティングがされた傾斜型ファブ リー・ペローエタロン板である.シリンドリカルレンズに よって線集光された光はARコーティング(反射率0%)の 入射窓から VIPA に入射し、出力面で大部分が反射され る.反射光は拡散しながら再び入射面側で反射し、その後 一部の光を放出しながら多重反射を繰り返す.これによ り、点光源が後方に一定の間隔で仮想的に配置され、傾斜 角の大きい回折格子のように振る舞う.この際、VIPA か らの透過スペクトルは図3(a) に示すように Δν_{FSR}間隔の

図3 (a) 二次元の波長 / 空間変換素子, (b) 波長(周波数)と空間の対応関係.

共鳴透過ピークを示す. y方向においてはこれらの多重透 過ピーク周波数(波長)がシフトしているのに対して, x 方向ではそれぞれの透過ピークは同一位置で空間的に重 なっているため,これを直交に配置した回折格子に入射さ せ,透過ピーク波長を分離することにより,コムモードを 二次元空間に展開させることが可能となる.

2. 実験装置

図4に実験装置の概略図を示す.光源には,狭線幅のCWレーザーを介することによって高精度に相対ロック

制御された2台のErファイバーコム(シグナルコムおよ びローカルコム, $\lambda_c \approx 1550$ nm, $f_{rep} \approx 100$ MHz, $\Delta f_{rep} =$ 1234 Hz)を用いている¹⁷⁾. 顕微鏡照明用光源として用い られるシグナルコムから出射した光は,バンドパスフィル ターによって帯域制限($\Delta \lambda \approx 24$ nm)がかけられた後, ピンホールを通過することによって点光源化される. ビー ムスプリッターを通過した成分は,シリンドリカルレンズ によって線集光され,VIPA(共振周波数間隔(FSR):15 GHz,フィネス:110)と回折格子(1200 lp/mm)からな る二次元波長/空間変換素子に入射する. これにより,

図4 実験装置の概略図.

個々のコムモードが異なる角度で二次元空間分散されたレ インボービームが生成され、リレーレンズと対物レンズ (NA 0.25) を経て、二次元の焦点スポット群としてサンプ ル上に照射される。この際に、反射 / 吸収 / 散乱または位 相変化といったサンプルの光学特性空間分布は、スペクト ル変調されてシグナルコムにエンコードされる。サンプル から戻ってきた光は、逆方向から同一の二次元波長 / 空間 変換素子を通過することにより、空間的に分散したそれぞ れのコムモードは再び重ね合わせられる。ビームスプリッ ターによって反射した成分は、共焦点性付与のためのピン ホールを通過した後、デュアルコム分光のためのローカル コムと空間的に重ね合わせられ、発生したインターフェロ グラムをフォトディテクターと高速デジタイザー (サンプ リング周波数: fren)によって計測する. このインター フェログラムをフーリエ変換することによって得られた振 幅・位相スペクトルとイメージ画素の一対一対応関係を用 いて、共焦点振幅および位相イメージを取得する、実際に スペクトルからイメージを再構成する前には、あらかじめ 取得しておいた参照スペクトル (ミラーをサンプルに利 用)を用いて正規化処理を行う.振幅スペクトルでは振幅 比を算出し、位相スペクトルでは位相差を取ることで、シ グナルコムがもつ元々のスペクトル形状および初期位相の 影響を相殺している。したがって、本実験で得られる位相 イメージは、厳密には位相差イメージである.

3. 実験結果

はじめに,テストチャートを測定対象に用いて本手法の 原理確認実験を行った.図5(a)に示すように,ガラス基 板の上にテストパターンをもった反射クロムコート(厚さ 約100 nm) がなされているポジティブタイプのテスト チャートを用いており、これらの構造によって反射率(振 幅)および位相に変化が現れるものと予想される。図5 (b) および (c) に構造がないミラー部分において、図5 (d) および (e) にはチャート構造が存在する部分におい て取得した振幅および位相スペクトルを示す. インター フェログラムの総取得時間は 81 ms (取得レート Δfrep: 1234 Hz, 積算回数 100 回) である. スペクトル帯域は 192.8 THz から 194.3 THz までの 1.5 THz であり、fren は 100 MHzであることから、15000本のコムモードから構成され ている。ここで、図5(b)の構造がない部分での振幅スペ クトルにおける微細構造は、VIPA の透過ピーク周波数を 表している。図5(b)の振幅スペクトルとの比較から明ら かなように、図5(d)のチャート構造がある部分の振幅ス ペクトルでは、構造を反映してスペクトルに変調がかかっ ていることが確認できる。一方で、位相スペクトルでは図 5(c), (e) どちらにおいても $\pm \pi$ の範囲の値を取ってい ることがわかる、次に、前述の正規化処理を行った後の振 幅および位相スペクトルを図5(f),(g)に示す.正規化 処理により、図5(f)の振幅スペクトルでは、振幅(反射 率)の高い部分と低い部分に分かれていることがわかる. また、位相スペクトルでは、0 rad 付近を中心として何ら かの構造を反映したスペクトルとなっていることがわか る.このようにスペクトルに構造がエンコードされている ことが確認できたので、次に SN 比が良好な 12382 本のコ ムモードを抽出した後、波長空間変換に基づいてイメージ の再構成を行った結果を図6(a),(b)に示す。画像のピ クセル数は、コムモード本数と同一であり、82×151 ピク セル (220 µm×1013 µm) で構成されている. 図 6 (a),

図5 (a) テストチャートの概略図.(b),(c) テストチャートのミラー部分で取得した振幅,位相スペクトル.(d),(e) テストチャートの構造部分で取得した振幅,位相スペクト ル.(f),(g) 正規化処理した振幅および位相スペクトル.

(b)から,共焦点振幅・位相イメージのどちらにおいて も,テストチャートの構造を明確に反映した結果が得られ ていることを確認できた.これらの画像の空間分解能は回 折限界によって制限されており,面内,深さ方向のどちら においても実測値と理論値はよく一致していた.一方,位

図7 (a) 段差構造サンプルの概略図, (b) 共焦点位相イメージからの三次元構成図.

相の分解能については、光学系全体の振動・空気ゆらぎな どの外乱に対する堅牢性、シグナルコムとローカルコム間 におけるタイミングジッター、インターフェログラムの SN 比などに依存する位相ノイズにより決定される. この 値を評価するため、100 回の共焦点位相イメージを計測 し、同一ピクセルにおける位相値の標準偏差を位相分解能 とした. この計測から、位相分解能は 0.028 rad (= λ /224) と算出された. ここで、共焦点位相イメージングを表面形 状測定に応用する際、測定対象の高さ分布 H(x,y) は計測 した位相分布 $\phi(x,y)$ を用いて以下の式で表すことがで きる.

$$H(x,y) = \frac{1}{2} \frac{\phi(x,y)}{2\pi} \lambda = \frac{\lambda}{4\pi} \phi(x,y) \quad (1)$$

上式と位相分解能および光コムの中心波長(1550 nm)を 代入することによって,位相による高さ測定分解能は3.5 nmと算出できる.この計算から,本手法では通常のCLM における深さ分解能と比較して2~3 桁程度よい値が得ら れているということがわかる.

上記のような共焦点位相イメージングにおける高い深さ

図6 テストチャートの顕微イメージ.(a)共焦点振幅イメージ,(b)共焦点位相イメージ.

図8 (a) 線維芽細胞 (NIH3T3 細胞) の位相差顕微イメージ, (b) 共焦点振幅 イメージ, (c) 共焦点位相イメージ.

分解能の効果を確認するため、図7(a)に示すような3段 の nm オーダー形状をもった対象の表面形状測定を行っ た.図7(b)は共焦点位相イメージの位相値と式(1)を 用いて得られた段差サンプルの高さ分布を三次元表示した ものである。イメージから、3つの段差が測定できている ことが確認でき、それぞれの段差は $h_1 = 317\pm 12$ nm, $h_2 = 122\pm 13$ nm, $h_3 = 51\pm 18$ nmと求められた。これらの 段差は、AFM (atomic force microscope)を用いて事前に 測定しておいた値とよく一致しており、共焦点位相イメー ジングの妥当性が確認できた。

最後に、

位相の利用による透明物体の可視化のデモンス トレーションとして、線維芽細胞(NIH3T3)の計測を 行った。はじめに、細胞接着タンパクでコートしたスライ ドガラス上に細胞を播種し、位相差顕微鏡で観察した際の 結果を図8(a)に示す。イメージから、視野内において細 胞が点在している様子が確認できる。共焦点イメージング の際には、実験装置に記載のように反射配置の光学系を利 用するため、金コートしたスライドガラス上に同様の密度 で細胞を播種して計測を行った。まず、図8(b)の共焦点 振幅イメージでは、イメージコントラストは光振幅に基づ くことから、光強度で画像化する従来 CLM と同様、視野 内において何も構造が確認できておらず、細胞のような透 明物体の測定は困難であることがわかる.一方,図8(c) の共焦点位相イメージでは、細胞が存在する位置における 屈折率変化によって、イメージにコントラストが付与され ている. 共焦点位相イメージで可視化された構造は, 図8 (a)の位相差顕微鏡を用いた場合のイメージと類似してい ることから、細胞の輪郭が可視化できていると考えられ、 本手法によって共焦点性を付与しながら透明物体の計測が 可能であることが証明できた。

まとめ

本稿では、スキャンレスデュアルコム顕微鏡による共焦

点位相差イメージングについて紹介した.本手法により, CLM に光の位相に基づく新たなイメージコントラストを 付与することが可能となった上,レーザービーム走査を必 要とせずスキャンレスに共焦点振幅・位相イメージを取得 できた.現在われわれのシステムにおけるイメージの取得 レートは,用いる光コムの繰り返し周波数やイメージの SN比によって数百Hz程度に制限されており,スキャンレ ス特性を完全に生かしきれていない状況である.一方,最 近になって他グループにより,微小光共振器¹⁸⁾あるいは 電気光学変調器¹⁹⁾を用いた高繰り返し周波数の光コムを 利用したスキャンレスデュアルコムイメージング手法が報 告され,数百kHz~数 MHzのフレームレートでのイメー ジ計測が可能となってきており,本手法の今後の応用拡大 が期待される.

また,われわれのグループでは,蛍光強度・蛍光寿命の 取得が可能なスキャンレスデュアルコム蛍光顕微鏡²⁰⁾, レーザースキャンを行うかわりに分光情報の取得が可能な レーザー走査型デュアルコム顕微鏡²¹⁾や,シングルピク セルイメージングを用いたスキャンレスデュアルコム分光 イメージング法²²⁾などさまざまなデュアルコム分光法の イメージング応用を行っており,関連の参考文献などもあ わせて参照願いたい.

本研究は,JST, ERATO 美濃島知的シンセサイザ (IOS) プロジェクト (JPMJER1304),日本学術振興会・科研費・ 基盤研究 (A) 19H00871,中谷医工計測技術振興財団・平 成 29 年度技術開発研究助成【特別研究】によって助成さ れた.

文 献

- 1) P. Davidovits and M. D. Egger: Nature, 244 (1973) 366–367.
- G. J. Brakenhoff, P. Blom and P. Barends: J. Microsc., 117 (1979) 219–232.
- C. J. Sheppard and D. M. Shotton: Confocal Laser Scanning Microscopy (BIOS Scientific, Oxford, 1997).

- 4) F. Zernike: Physica, 9 (1942) 686–698.
- 5) D. B. Murphy: Fundamentals of Light Microscopy and Electronic Imaging (Wiley, Hoboken, 2002).
- H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari and M. S. Feld: Opt. Lett., 29 (2004) 2399–2401.
- C. J. Mann, L. Yu, C. M. Lo and M. K. Kim: Opt. Express, 13 (2005) 8693–8698.
- G. J. Tearney, M. Shishkov and B. E. Bouma: Opt. Lett., 27 (2002) 412–414.
- 9) K. Goda, K. K. Tsia and B. Jalali: Nature, 458 (2009) 1145-1149.
- 10) S. A. Diddams, L. Hollberg and V. Mbele: Nature, 445 (2007) 627-630.
- I. Coddington, N. Newbury and W. Swann: Optica, 3 (2016) 414-426.
- 12) E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington and N. R. Newbury: Phys. Rev. A, 84 (2011) 062513.
- I. Coddington, W. Swann, L. Nenadovic and N. Newbury: Nat. Photonics, 3 (2009) 351–356.
- 14) E. Hase, T. Minamikawa, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, Y. Mizutani, T. Iwata, H. Yamamoto and T. Yasui: IEEE J. Sel. Top. Quantum Electron., 25 (2019) 6801408.
- 15) E. Hase, T. Minamikawa, T. Mizuno, S. Miyamoto, R. Ichikawa, Y.-D. Hsieh, K. Shibuya, K. Sato, Y. Nakajima, A. Asahara, K.

Minoshima, Y. Mizutani, T. Iwata, H. Yamamoto and T. Yasui: Optica, 5 (2018) 634–643.

- 16) M. Shirasaki: Opt. Lett., 21 (1996) 366-368.
- 17) Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama and F.-L. Hong: Opt. Express, 18 (2010) 1667–1676.
- 18) C. Bao, M.-G. Suh and K. Vahala: arXiv:1809.09766 (2018).
- 19) P. Feng, J. Kang, S. Tan, Y.-X. Ren, C. Zhang and K. K. Y. Wong: Opt. Lett., 44 (2019) 2919–2922.
- 20) 水野孝彦,長谷栄治,南川丈夫,山本裕紹,安井武史:"デュ アル光コムビートの2次元周波数多重化ビームを用いた蛍光 イメージング法の開発",日本光学会年次学術講演会 Optics & Photonics Japan 予稿集,2aA5T (東京, 2018).
- 21) T. Minamikawa, E. Hase, S. Miyamoto, H. Yamamoto and T. Yasui: "Development of confocal laser scanning microscopy by use of optical frequency comb," *Technical Digest of the Conference on Lasers and Electro-Optics (CLEO)*, paper SF2C.3 (San Jose, 2017).
- 22) K. Shibuya, T. Minamikawa, Y. Mizutani, H. Yamamoto, K. Minoshima, T. Yasui and T. Iwata: Opt. Express, 25 (2017) 21947–21957.

(2019年7月19日受理)